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We obtain the effective action deformed by the graviphoton background, which contains
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1. Introduction

Ramond-Ramond (R-R) background in type II superstring theories plays an important
role in studying effective theories on the D-branes. In particular constant graviphoton
background induces non(anti)commutativity in world-volume superspace [[l-B]. N = 1
super Yang-Mills theory on non(anti)commutative superspace (N = 1/2 superspace) [{] is
obtained from type IIB superstrings with constant graviphoton background compactified
on a Calabi-Yau threefold. The deformed action was constructed explicitly in [ff] from open
string amplitudes in type IIB superstring theory compactified on an orbifold C? /2o X Zy
in graviphoton background.

Non(anti)commutative N' = 2 harmonic superspace provides various types of deformed
N = 2 supersymmetric gauge theories f@]. In a previous paper [@], two of the present
authors studied the deformation of N' = 2 supersymmetric Yang-Mills theory from the
open string disk amplitudes with one graviphoton vertex operator in type IIB superstring
theory. The deformed A/ = 2 super Yang-Mills theory is realized as the low-energy effective
theory on the D3-branes in the type IIB superstrings compactified on C2/Zs with constant
graviphoton background. The constant R-R backgrounds F*%% are classified into four
types of deformations (S,S), (S,A), (A,S) and (A,A)-types, in which (S,S) and (A,A)-types
deformations are related to the deformation of A’ = 2 superspace. By choosing the (S,S)-
type graviphoton background and the appropriate scaling condition, it was shown that the



effective Lagrangian on the D3-branes becomes the deformed one in non(anti)commutative
N = 2 harmonic superspace at the lowest order in deformation parameters.

It is an interesting problem to extend this deformation to N/ = 4 case. Since super-
space formalism keeping N' = 4 supersymmetry manifestly is not yet known, superstring
approach provides a systematic method for understanding general non(anti)commutative
deformation of N' = 4 theory. The couplings between R-R fields and the world-volume
massless fields on the Dp-branes have been studied in [[3, [[J], which are written in the
form of the Chern-Simons action. In recent papers [[4], by restricting the constant five-
form background to the deformation parameter of N' = 1/2 superspace, it is shown that
the bosonic part of the Chern-Simons action reduces to the deformed interaction terms
of the N = 4 super Yang-Mills theory in N' = 1/2 superspace. The interaction terms
including fermions are constructed by the supersymmetric completion [[4] using remaining
supersymmetries but disagree with the deformed action based on non(anti)commutative
superspace.

In this paper we will study the deformation of N = 4 supersymmetric Yang-Mills
theory from open string amplitudes in the constant R-R graviphoton background. We
put the D3-branes in type IIB superstrings in flat ten-dimensional (Euclidean) space-time.
We will compute open superstring disk amplitudes with one graviphoton vertex operator
and determine the low-energy effective Lagrangian at the first order in the deformation
parameter C'. We will find the effective action in a special graviphoton background agrees
with the deformed action defined on non(anti)commutative A/ = 1 superspace at the first
order in C. We will also confirm that the bosonic terms deformed by C in the effective
action is in agreement with the Chern-Simons term of D3-brane effective action [[14].

The action contains new scalar potential terms deformed by C. This term corresponds
to the Myers term [[[J] which gives rise to a dielectric configuration for scalar fields. In
the N/ = 1/2 superspace formalism, this type of configuration was found in [[4]. In the
present paper, we will explore the fuzzy two-sphere configuration for the scalar fields in
the presence of constant U(1) gauge fields, based on general (S,S)-type deformed action.

This paper is organized as follows: in section 2, we review D3-brane realization of N =
4 super Yang-Mill theory in type IIB superstring theory and classify the R-R background.
In section 3, we calculate the disk amplitudes with one closed string graviphoton vertex
operator and the effective action on the D3-branes. In section 4, we study the vacuum
configuration of the deformed N = 4 theory and find the fuzzy two-sphere configuration
for scalar fields. In appendix A, we summarize some useful formulas to calculate the open
string disk amplitudes. The deformed N = 4 super Yang-Mills theory defined on NV = 1
non(anti)commutative superspace is presented in appendix B.

2. D3-brane realization of N’ =4 super Yang-Mills theory
In this section we review the D3-brane realization of N'= 4 super Yang-Mills theory [IF].

2.1 Type 1IB superstrings
We begin with explaining type IIB superstrings in flat space-time. We will use the NSR



formalism. Let X™(z,Z), ¥™(z) and ¢™(Z) (m = 1,--- ,10) be free bosons and fermions
with world-sheet coordinates (z, z). Their operator product expansions (OPEs) are given
by X" (2) X" (w) ~ =" In(z — w) and ™ (z)Y"™(w) ~ ™" /(z — w). Here the space-time
signature is Euclidean. Fermionic ghost system (b, c¢) with conformal weight (2, —1) and
bosonic ghost system (3, ) with weight (3/2,—1/2) are also introduced. The world-sheet
fermions ¢ (z) are bosonized in terms of free bosons ¢%(z) (a =1,---,5) by
1

V2
Here ¢%(z) satisfy the OPE ¢%(2)¢®(w) ~ §%° In(z — w) and the vectors e, are orthonormal
basis in the SO(10) weight lattice space and cea is a cocycle factor [[[§]. The bosonic
ghost is also bosonized [[q]: B = 0¢e™?, v = e®n with OPE ¢(2)p(w) ~ —In(z — w).
The R-sector is constructed from spin fields S*(z) = e (2)cy, where ¢ = ¢%, and \ =
$(e1 testeztestes). Abelongs to the spinor representation of SO(10). ¢y is a cocycle

FEea(2) @21 F 1?) = e (2) : cea. (2.1)

factor. In type IIB theory, after the GSO projection, we have spinor fields which have odd
number of minus signs in A, for both left and right movers.

We now introduce parallel N D3-branes in the (z!,--- , z%)-directions. Since the D3-
branes breaks the ten-dimensional Lorentz symmetry SO(10) to SO(4) x SO(6), the spin
field S*(z) is decomposed as (SaSa, S¥S4), where S, and S¢ (o, & = 1,2) are four-
dimensional Weyl spinor and S4 and S4 (A = 1,2,3,4) are six-dimensional Weyl spinor.
S4 (S4) belongs to the (anti-)fundamental representation of SU(4). The Dirac matrices
for four dimensional part are o, = (it!,ir?,ir3,1) and &, = (—ir!, —ir?, —it3,1), where
7 (i = 1,2,3) are the Pauli matrices. The Lorentz generators are defined by o** =
H(o16Y — 0¥5") and G, = 1(0,0, — TL0,).

The gamma matrices for six-dimensional part are given by

= (7, =i’ =it i), B = (=i, =i, ), (2.2)
where a = 1,---,6. 1, and 7y, are 't Hooft symbols, which are defined by o, = %nﬁlﬂ'a
and 0, = %ﬁZVTa. The matrices (R.9) satisfy the algebra

(ZHAB (22 g + (Z)AB (29 go = 207064, (2.3)

The massless spectrum of open strings contain gauge fields A, six scalars ¢ in the
NS sector and gauginos A%* and Ag4 in the R sector. The vertex operators for gauge and
scalar fields in the (—1) picture are given by

— A ) .
Vj U(y;p) = (2770/)% “(21)) ¢u(y)e—¢(y)ezv2m pX)

5

Vi (yip) = (2ma)? SDf/(g Ly (y)e oW VT X, (24)

while in the 0 picture, they are given by
. 1 . 1 iV2ma!p-
VA  (y:p) = 2i(2ma’) 3 Ay (p) (DXP(y) + i(2mal) 2 p - ot (y) ) V2P0,

VIO (y;p) = 2i(2ma’ )30 (p) (9X°(y) +i(2n0! - pu(y) ) VITXW. (25)



The gaugino vertex operators in the (—1/2) picture are

VI (yip) = (270) 1A (p) S (y)Sa(y)e 20W)V2rapX()
—1/2) (

NI

VD (i) = (20! i Raa(p)S% (y) S (y)e 300NV ETP X W), (2.6)
We adapt dimensionless four-momentum +/27a’p to ensure that the momentum represen-

tation of a field has same dimension of space-time field.

2.2 R-R vertex operator

The vertex operators for massless states in the R-R sector of type IIB superstrings are
constructed from the tensor product of spin fields (S*S4,S454) and (S8S5, S'BS'B). We
will study the effect of constant R-R background, which is described by the closed string
vertex operator

VORI (5 2) = (27a!) s FOPABG, S 4 29 (2) S Spe 29 (2). (2.7)

We note that general massless closed string states in the R-R sector contain the field
strength of types F¥¢4p, Fa®4B, and ]:aﬁAB' Since the vertex operator (R.7) provides
a generalization of the deformations of A/ = 2 non(anti)commutative superspace [[L1], we
will consider this type of deformation in the present work.

As in the N = 2 case [, the field strength is decomposed as

FaBAB _ paf)(AB) | p(aB)AB] | Flap)(AB) | FlafllAB] (2.8)

Here the parenthesis (AB) represents symmetrization of indices A and B. [AB] represents
anti-symmetrization. We call these backgrounds (S,S), (S,A), (A,S), (A,A)-type deforma-
tions respectively. We now examine the correspondence between the field strength Fo#AB
and the p-form R-R field strengths in type IIB superstrings.

For four-dimensional sector, the tensor f*? can be decomposed into the singlet and
the self-dual tensor parts:

fP =P f 4 (") fop. (2.9)

The first term corresponds to antisymmetric part and the second to the symmetric part.

For six-dimensional sector, the spinor indices are labeled by the fundamental repre-
sentation 4 of SU(4). The tensor product 4 ® 4 can be decomposed into 6 & 10, which
corresponds to the vector or the self-dual 3-form representation, respectively. In fact, the
tensor g4P is expressed as

gt = (2B gy + (2B ggpe. (2.10)

Here we define a matrix which is totally antisymmetric with respect to the space indices
of abc,

(Dbe)AB = (plagbyd)AB, (2.11)



The first term in (R.10) corresponds to the antisymmetric part and the second to the
symmetric part. The matrix £%€ is self-dual:

(EabC)AB _ %Eadeef(Edef)AB, (212)
and consequently the three-form g.;. also satisfies the self-dual condition,
Gabe = 3'Eabcdefg f (213)

From the decompositions (£.9) and (B.1(), we find that the F*#4B can be decomposed
into

FOOAP = (0 4+ (0" ) fu ) (5D ga + (50 gunc)
= [9a€® ()P + [ apee® (S)P 1 frnga(oh)?0 (£9)AP
+ fyuGave ()P (£40) AP, (2.14)
which corresponds to
FOPAB  (R-R 1-form) ® (R-R 3-form) & (R-R 3-form) & (R-R 5-form). (2.15)

The decomposition (R.14) shows that the (A,A) deformation corresponds to the R-R 1-
form, the (A,S) and (S,A) deformations to the R-R 3-forms, and the (S,S) deformation to
the R-R self-dual 5-form. In fact, if we identify the self-dual five-form field strength F™"P4"

as
F,Lu/abc — fﬂygabc, (216)

then it satisfies the self-dual condition in the 10-dimensional space,

prvabe — L cuvabepodef pp (2.17)

2‘3'
We note that the similar decomposition holds in the case of the deformation of NV = 2

super Yang-Mills theory [[1]], which is constructed from the type IIB superstrings com-
pactified on C x C?/Z2.

2.3 Disk amplitudes and auxiliary field method

The action of N' = 4 supersymmetric Yang-Mills theory is obtained by evaluating correla-
tion functions of the vertex operators given in equations (R.-4), (2.5), (B.6). Let us consider
disk amplitudes with boundary attached on the D3-brane world volume. The disk is re-
alized as the upper half of complex plane. The boundary condition of the spin field [[[5]
is

SaSA(Z) = SQSA(E)

(2.18)

z=z
The disk amplitudes can be calculated by replacing S,S4(Z) by S,S4(Z) in the correlator.
The n + 2nz-point disk amplitude for n vertex operators V)(Q )(yl) and nr R-R vertex

_1_1
operators V](E 2 2)(zj, Z;) is given by

_c /Hz 1dyz = 1d2jd,§j
b2 dVeka

(q1) (—3
<VX1 (y1) - V]—'

NI
~—

(q1) (*% 7% =
«VXl V]__ (21,21)--->.

(2.19)



Here Cp, is the disk normalization factor [[[§:

1 1

Cr. — 2.20
D2 = 9r2 ()2 kg3 (2.20)
and gyn is the gauge coupling constant. k is a normalization constant of U(NN) generators
T Tr(T°T%) = ké®. dVeoge is an SL(2, R)-invariant volume factor to fix three positions

x1, 2 and w3 among y;, zj,and Zz;’s:

dxldxgdmg
Ty — 962)(362 - 963)(963 - 361).

dVera = ( (2.21)

The open string amplitudes in the zero slope limit show that the effective action on
the D3-branes is that of AV = 4 super Yang-Mills theory:

11 1 . , 5 1

‘CSYM = E 2 TI' |:—ZF'W/ <F/»“’ + Fﬂy) — ZAaA(Uﬂ)aﬁ'DﬂA A 5 (Dﬂ@a)2
Iym

1 _ _

+5 (597 Raalpa, &

& | o 1
Bl 45 (5) 450 Alpa, AD) + Z[@aa@b]Q o (2.22)

where

F,, = QLA,, — al,Aﬂ + i[Aﬂ,A,,],
Du@a = Opa + i[A;u Spa]a (2'23)

and A, = AZT“ ete. F;w is the dual of F,

We use the auxiliary field method [f, [] to simplify the string amplitudes including
contact terms. We introduce the auxiliary fields H¢ = N H", Hyq and Hgp, and rewrite
the action (R.22) into the form

1 1 1 1
Lovm = ——5— T | 5 (0uAy — 0, 4,)04 A +i8, A, [A*, A] + —HCHC+ Henp, [AF, A”]}

gym K 2

1 1 1 1

—Tr _HabHab + _Hab Pa,r Pb

111 " . " 1 ap "

—— kTr gaucpaa Vo + 10upa[A*, pa] + §HWH + Ho[A*, 4] (2.24)
QYM L

L Ly [iadorp A, — L (50)4B R A% L A%, AB

—— kTrz o MA—i( ) aA[ﬂﬂa7 B]_i( ) [ﬂpa, ]
QYM L

All quartic interactions in (R.23) are replaced by cubic ones. The vertex operators for

auxiliary fields are given by

1 ; .
Vit () = 5(2ma) Hyo (p)ve>m v X (y),

Vi) (530) = 2(2m0) Hya (p)i° (y)e™ 2w X ),

VO (yip) = —%(m) ()6 (y) eV TP X W), (2.25)



3. Disk amplitudes in the constant graviphoton background

In this section we calculate disk amplitudes including one graviphoton vertex operator in the
zero-slope limit and study the deformed A = 4 super Yang-Mills action at the order O(F).

As in the N =1 [ff] and N = 2 [[I9, [L] cases, the deformed action depends on the
scaling condition for the graviphoton field strength. In this paper we fix the zero-slope
scaling of R-R field strength as

(2ma)2 FOBAB = CoBAB _ fived. (3.1)

In this scaling, the parameter C*?4B has mass dimension —1, which is the same dimension
as the deformation parameters in non(anti)commutative superspace. We will also focus
on the (S,S)-type background F (@B)(AB) " which corresponds to the self-dual R-R 5-form
background and is expected to give a generalization of non-singlet deformation of N' = 2
superspace [L1]].

When the R-R vertex operator (R.7) is inserted in the disk, the charge conservation
for internal spin fields restricts possible insertions of the open string vertex operators. In
fact, the operators of types AA, AAp and @y cancel the internal charge of the R-R vertex
operator. In the zero slope limit with the scaling condition (B.1), we find that the following
amplitudes become nonzero in the (S,S)-type background:

0 —1/2 —1/2 —1/2-1/2 0) 12 —1/2 —1/2-1/2

(VOVED DY A (O Ry a0y (3.2)
—1/2 —1/2-1/2 —1/2 (-1/2 0 —1/2-1/2

(i e A e AT (A j >v / )VISJV} 2y, (3.3)

- —1/2-1/2 0 —1/2-1/2 0 0 - —1/2-1/2

(VEVOVEIVE P v VIOV Dy DRV, Vi VED V),
0)¢ (0 _ —1/2-1/2 0 0 _ —1/2-1/2

«V( )V( ) V( 1)V( /2-1/ )>> <<VI£TZAVISI:¢V¢S 1)V](_- /2-1/ )>>7

«V(O) V( 1/2)V( 1/2)V( 1/2-1/2) >> (3.6)

As in the N = 1 [ff] and N/ = 2 [[LI]] cases, gauge invariance in the effective action is
ensured by the fact that the derivative 9,4, or 0,¢, appears together with auxiliary fields
H,, and H
after integrating out auxiliary fields. Appropriate weight factors of the amplitudes must

uas respectively. The derivative terms turn out to be covariant derivatives

be taken into account to keep the gauge invariance of the results. We now compute the

amplitudes (B.3)-(B-H) explicitly.

(VAVAVAVE) + (VE, . VxVaVE). The first term of the amplitudes (B.2) is given by
WO o)V o)V (py) v BTy (3.7)
= s i 227 Tr [Aup Rac (R )] 70740

dy;dzdz _
% /M (e 22W1) e 20(2) 0= 29(2) =392 (GO (1) SP () Su (2) S5 (2))
dVeka

. 3
" <<8X“<y1> +i(2mal)apu 0 (41) ) 5% (92)S° (4)Sa(2)S5(2) [ | V—X()> |
j=1



We note that OX* in the last correlator of (B.§) does not contribute to the amplitude
because of symmetric property of F(@#)(AB) - The correlation functions are calculated by
using bosonization formulas summarized in appendix A. We then perform the world-sheet

integral of the form

00 Y2 (Z _ 2)2 (% 27‘1’_2
IR e e e e 35

which is done by fixing the world-sheet coordinates to z = i,Z = —i,y; — oo. The

amplitude becomes

(V0 o) V-2 (o) vV (py) v VAT

An%i , _ . .
= _k:;; ! Tr [(UMV)aBZpl[MAV} (p1)AaA(p2)A B(p3) (271-0/)3]5( ﬁ)(AB)‘ (3.9)
YM

The second term in (B-J) can be evaluated in the same way. The result is

(Vi) (VA2 (o) Vi (pgy v 2R

Hpa
11 8n% » & N2 (aB)(AB)
= oy [(U Vs Hy (p1)Rn (p2) A5 (ps) | (2m0/)2 F . (3.10)
20 2 kg

We need to add another color order contribution, which actually gives the same result
and cancels the symmetric factor 1/2!. The interaction terms in the effective Lagrangian
obtained from the amplitudes (B.9) and (B.10) are given by

) v i A & 3 [e
Ly = kg2 Tr [(‘7“ Jas <8[u‘4u} - §H;w> Aaal B] (2ma)2 FEOMUB) - (3.11)
(VAVEVoVE) + (VAVEVE,, VF)) . The first term in the amplitudes (B.3) is given by

«V/{fl/2)(pl)vx(fl/2)(p2)VS£O)(pB)VJ(;l/Q,fl/Q)»
1 1 ‘ o .
= 537 e (2i)(2ma/ )3 Tr [AVC(Pl)A[;D(pz)gOa(pg)} FlaB)(AB)
YM

L 05022 ton) o~ otm o~ ote) - ot2)y
dVeka

x (($25c(wn)S”S” (y2) (9X° (ys) + (270 ) 2 v (u3)
3
xSaSa(2)8585(2) [[ eimpj-X<w>> . (3.12)
j=1

Here 0X® does not contribute to the amplitude for the (S,S)-type background. Using the
formula for the five point function of spin fields in appendix A, we obtain

VA2 ) VYD () VIO (pg) V2T

A
A% C =a - wy G N3 ~(aB)(AB)
= Tr [Ay (p1)(E7) achaB(p2)(0") 5 ipsupa(ps)] (2ma’)2 F - (3.13)
YM



The amplitude which includes the auxiliary field H,,, is given by

—-1/2 —-1/2 0 —1/2,—-1/2
(Wi v )(Pz)Vfgjw(Ps)V} )
2 4Ar%
= 3kt

Tr [AL (p1)(EY) achas (p2)(0") 4 Hua(ps)] (2ra!) 3 F@PAB) (3 .14)

Another color order contribution needs to be added. These amplitudes are obtained from
the interaction
A%

a kg%(M

Lo Tr [{(0")5 (Oupa — iHya) . Ran } (5" s (2ma’)2 FEDUB) - (3.15)

(VoVoVoVE) + (VHA, VHA, Vo VE) + (VH,, VHA, Ve VE) . The first term in (B4)
is given by

<<V¥§0)(pl)véo)(p2)V¢g—1)(ps)vf(—l/z,q/z)»
! ! )2 1 3 af)(AB
= 27T20/2%(21) ﬁ(zﬂ'a,)QTr [0a(p1) b (p2) e (p3)] FOPIAB)
X /M <e_¢(y3)e_%¢(z)e—%¢(5)>
dVeka

(90X () +i(2ma! Y pra v () ) (9X"(02) +i(2m! ot v (1))

3
X 4°(y3)Sa(2)S5(2)Sa(2)S5(2)S5(2) [ | ﬁx<>> . (3.16)
j=1

In the above amplitudes the term containing 0X*0X? gives the contribution (S,.S 3) ~ €aBs
which becomes zero after the contraction with the (S,S)-type background. The terms
containing the single 0X do not contribute to the amplitude due to (S,y*Sg) = 0. We
obtain

(VO (1) VO (p2) VD (ps) V272 (3.17)
42 =0 h=C . . 3, (a
= e Tr [(0")ap (X »'y )ABmetpa(m)zpzycpb(pg)%(pg)] (2ma)2 FOBAAB)
YM

The amplitudes including auxiliary fields can be calculated in a similar way. Multiplying
appropriate weight and symmetric factors, the interaction terms in the Lagrangian are
shown to become

_ 1 472
N 3kg%M

L2 47 1y sty 12 FaB)(AB)

11 | (0")ag (X X2 ) AB{ Hpua, Ovpp tope | (2Tl )2 F

3 21 kg

1 22 4r? —aape 3

12 4m Wy b 13 FaB)(AB)

N To LT (s ("S5 ) ap HyaHippe| (2 ) 5 F . (3.18)

3 Tt [(0)as (S 275%) 4B O padiupe | (2ma’) FEDAD)



(VAVH,,VoVE) + (VHaaVH,,VeVE). Now we compute the amplitude (B.5). The
first term in (B.5) is given by

WA o) Vi), )V )V /7

R S SOV SR S NS P (aB)(AB)
T 9n20/2 kg%M (24) < \/§> \/5(27”)‘) Tr [Au(pl)Hab(p2)§00(p3)] F

dy,dzdz .
%‘37] <e*¢(y3)e*§¢>( o390 ><¢a¢ (2) 8 (43) S a(2) S5 (2))
CKG
3
X <(6X“(y1) + i(QWa’)%plzx?/w¢u(yl)> Sa(2)Ss(Z) H ei\/ﬁpj.x(yj)> .(3.19)
j=1

The term including X does not contribute to the amplitude for the (S,S)-type background

again. Evaluating the correlation functions, we obtain

WV )V )V D (ps) V22
z\f 2T

= T [0 (5" ST i A (1) Has (p2)els) ] (2ol EFOOAP)
YM

(3.20)

Taking into account other color ordered contributions and adding the second term in (B.3),
the interaction terms become

\/57721'

Ly=—
kg%M

T (0o (S5 ) am (04,40 5o ) (a0} (20 LFAP) 3.)
(VH,,VAVAVE)). This amplitude is given by

0 —1/2 ~1/2 ~1/2,~1/2
<<V1§2¢(P1)V/£ / )(pz)ng / )(Ps)V} / / )>>
1 1 1
~ 220 kg - (2ma)* 2 (—ﬁ> Tr | Hap(p1) A€ (p2) AP (pg) | FOOIAE)
Y™
Hj dy;dzdz
KT

x (9" (y1)Sc (y2) S (y3) S a(2) SB(2)) (S (y2) S5 (y3) Sa(2) S5(2)). (3.22)

Using the formula (A.15) in the appendix A, we get

¢~ 892) g~ 30(Ws) o~ §6() g~ 4(2))

WV )V () VTP (ps) v /212y (3.23)

2\/—71' ab 2 «
= o T [T copan Halp)AL ()AL (s)| (2ma!) 3 FEDAP).
YM

Adding the color ordered amplitude and considering weight and phase factors, we find that

the interaction term is

2\/_71' Z ab s (a
£5 = kg {(E )A 5CDA’BH bA AB } (271'0/)3.7:( ﬁ)(AB). (324)
YM
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To summarize, the first order correction to the N' = 4 super Yang-Mills action from
the (S,S)-type graviphoton background is

Ligs) = L1+ Lo+ Ls+ arLy+ asLs. (3.25)

Here we have introduced additional weight factors a; and as, which should be determined
by higher point disk amplitudes without auxiliary fields. In this paper we will determine
these weight factors such that the deformed Lagrangian is consistent with the one defined
on N = 1/2 superspace.

By integrating out the auxiliary fields and defining the deformation parameter C' by

C(aB)(AB) = —8m2(2ma’ )%.7-" (@B)(AB) we find the deformed Lagrangian is expressed as
£ =LiGH+ Ly + 0(C?) (3.26)

where L4751 is the ordinary V' = 4 super Yang-Mills action (£:23) and

D = —1'—1 [ A A uv(AB)
(CB) B kg%M Tr _F;WAaAA B] C
i1 r iy -
—————Tr |{ Dy, (0M)aahs b () peA L | COAAB)
21‘/’9\2(1\/[ r_{ M<P7(U) A}( )BC /3]
1_ 1 [ v =0 —boC o
e Tr _(Jﬂ )aﬁ(E Y )ABDM‘PaDu(Pb(Pc} (B (AB)
: Iym
¢ ai [ v «—a ~C a
_gk 3 Ty I (O’M )aﬁ(z Ebz )ABFMV(paQObQOc} C( 8)(AB)
' IYm
toa [ ~ab\ A’ N
u 22 Tr (X )AA 5A/BCDSDaQ0bAaCA6D] C(@B)(AB) (3.27)
4k L
Iym

Here C*(AB) is defined by C*(AB) — C(aﬁ)(AB)Eg,Y(U“” Jo'- We note that the bosonic
terms in (B.27) gives the ones obtained from the Chern-Simons term [[J] in the R-R 4-form
potential

1

- 6kg2y,

Scs / d*z Tr [PaDuppDype — ipapppeF ] (2770/)% pvabe (3.28)
My

where  the self-dual 5-form  field strength is defined by  FHrabe =
—(Uuy)aﬁ(iazbic)ABC(o‘ﬁ)(AB). This Chern-Simons term was also derived from the
N = 4 super Yang-Mills theory on non(anti)commutative N' = 1 superspace [[4] (see
also appendix B). The reduction to deformed N = 1 superspace is done by restriction
of the deformation parameter C(@HAB) to ¢ The deformed Lagrangian (B.27)
agrees with the non(anti)commutative one in [[[4] if we choose the weight factors to be
a; — —%,az = —44.

4. Vacuum structure of deformed N = 4 theory

In this section we study the vacuum structure of deformed N'= 4 SYM theory based on

(]

the Lagrangian (B.24). For simplicity, we take A = A = 0, and consider ¢, as constants.

— 11 —



)

We also assume that only U(1) part of gauge field strength F, !B,(l is non-vanishing constant.

In this case, the Lagrangian becomes

1 1 I —ap—
Lscalar = WTY Z[(‘Oa’ b2 + 6(ZGEbEC)ABFE,(UCW(AB)(Pa‘Pb‘Pc ) (4.1)
YM
The equation of motion is given by
= el v
[0 [ @] + 3 (2T )ap FV C A [y, o] = 0. (4.2)

We want to find the solution with the ansatz

[Sod, QDE] = il{gdé@@éa (&’ Ba c= 1, 2’ 3)’
;=0 (i=4,5,6). (4.3)

Taking the contraction with C45) totally antisymmetric part of (i“zbic)AB remains.
We find that the equation (f.2) reduces to

(03, e 93]l + 323 (F - Oy pel = 0 (14)

where (idzf?ié) ApCP(AB) i written as gabe g ACHY(AB) for a symmetric matrix Map
and F-C = Fﬁ(l)CW(AB)MAB. Applying the ansatz ([.J) we find (f.J) can be rewritten
as

1
<I£2 + Z(F . C)K) 6%6686&30& =0. (4.5)
Thus the constant x should be
.. 1
(i) k= _Z(F -C). (4.7)

In the case (i) this gives the ordinary commutative configuration of D3-branes. However,
in the case (ii), due to the non-zero R-R background C, we have the fuzzy two-sphere
configuration [@g, ¢;] = ike,;,0e. Here we regard ¢, as the generators of SU(2) subalgebra
embedded in the N-dimensional matrix representation of the gauge group U(V), which are
normalized as @z = t1nyxn. The radius of the fuzzy two-sphere is given by

R2 = ‘P?L = /<L2t1N><N. (48)

5. Conclusions and discussion

In this paper, we have studied the effects of constant self-dual R-R graviphoton 5-form
background to the U(N) N = 4 super Yang-Mills theory defined on D3-brane world-
volume. We calculated the first order correction to the N = 4 super Yang-Mills action

with fixed (271'0/)%.7: = (' in the zero-slope limit. This scaling gives the same dimension

- 12 —



as the non(anti)commutativity parameter of deformed superspace. The deformed action
would be defined on the non(anti)commutative N' = 4 superspace which is characterized
by the Clifford algebra {#*4, 0°8} = C (@B)(AB) " This type of extended fermionic variables
appears in the pure spinor formalism [R—RZ] of superstrings. It would be interesting to
study this deformation by using pure-spinor formalism. This formalism provides also a
useful method to studying higher order graviphoton corrections.

By restricting the R-R 5-form field strength to the A/ = 1 deformation parameter and
assigning appropriate weight factors to the amplitudes, we found that the effective action
agrees with the one defined on N/ = 1/2 superspace [[[4] in our convention. We also found
the fuzzy two-sphere vacuum configuration which is induced by non-zero R-R background
as in [[[J]. We can do similar calculations for other types of R-R background such as (S,A),
(A,S) and (A,A). As pointed out in [L1], the (S,A) and (A,S)-type backgrounds would
not correspond to non(anti)commutative deformation of superspace because their index
structures are different. The (A,A)-type background, which corresponds to R-R 1-form
background, would provide the singlet deformation of N' = 2 superspace.

We found that there are no tadpole contribution nor divergent structure of the disk
amplitudes at the lowest order. This suggest that there is no backreaction to the flat
space-time in the constant self-dual graviphoton background. The (A,A) type background,
however, contains tadpole divergence as in the N'= 2 case [[1]. The flat space-time would
be inconsistent in the (A,A)-type background. A systematic analysis of D-brane dynamics
in constant R-R potential background can be found in [29].

Another interesting issue is to choose different scaling conditions for the R-R back-
ground field strength in the zero-slope limit. For example, in N' = 2 case, the (S,A)-type
background with the scaling (2ra/ )%]: = C is studied in [I9). The R-R three-form is re-
garded as the 2-background, which was used for the integration over the instanton moduli
space [24]. The C-deformation scaling (2ra’ )7%.7: = C would be also interesting [fl]. Tt
would be interesting to study nonperturbative effects for general constant R-R graviphoton
background.
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A. N =4 effective rules

In this appendix we summarize some definitions and useful formulas which appear in this

paper.
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We define spin fields in six dimensions by

1 1 1 1 1 1
Sl = ezP3tadatads Sy = e 2P 7301295
P U SR S § L1 1 1
G2 — je3P3—35%1 2(155’ Sy = ie 2¢3+2¢4+2¢57
1 1 1 1 1 1
5'3 - i2e*§¢3+§¢4*§1)¢5, S3 = i2€§¢3*§¢4+§¢5,
1 1 1 1 1 1
G4 = B aPsmgbatads Sy = iPez?3taba—305 (A.1)

The correlation functions for ten-dimensional spin fields can be realized as the product
of four-dimensional correlator and six-dimensional ones. Each correlator is expressed in
terms of gamma matrices, which is evaluated by using the effective rules listed below.

We firstly write down the correlation functions for four-dimensional spin fields:

(Sa(2)S5(2)) = caplz —2)"2, (A.2)
(5%(51)S" (y2)) = £ (g1 — y2) 72, (A.3)
(5% (41)5” (42)Sa(2)S5(2)) = e¥Penplys —y2) 2 (2 — 2) 73, (A4)

S

(S(y1) S (2)S7(2)S°(2)) = [(1 — y2) (1 — 2) (1 — 2)(y2 — 2) (y2 — 2) (2 — 2)]
x |90 gy = 2)(ya — 2) — ey - 2) (31 — 2)]

= [(y1 —y2) (1 — 2)(y1 — 2)(y2 — 2)(y2 — 2)(2 — 2)|”

X [—ﬁa%w(yl —2)(y2 — 2) + ™7 (y1 — y2) (2 - 5)] :

N |—

(A.5)
The correlators including world-sheet fermions become for example
é 1 _ 4 _1 1
(S (Y1) (y2)Salys)) = E(U“) aly1 —v2) 2 (y2 —y3) 2, (A.6)

Y. (y2 — y3) TV B k)
) s Gy —w) T =9

(A.7)
Next, the correlators for six-dimensional spin fields used in this paper are

(54(2)Sp(w)) = 6%(z — w) 74,

(54(2)S7 (w)) = (Sa(2)Sp(w)) =0, (A.8)
€ABCD
(S4(21)SB(22)5¢(23)SD(24)) =

1 i ’ ! (Zl—zz)i(zl—23)5(21—24)%(22—23)%(@—24)%@3—@%)
.9
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and

(S4(y1)S” (y2) Sc(y3)Sp(ya))
= (21— 22) T (21 — 23) 7 (21 — 2a) " F (22 — 23) ¥ (22 — 24) " (23 — 24)

X [—(21 — 2’4)(2’2 — Zg)(SAC(SBD + (21 — 2’3)(2’2 — Z4)(5ADfsBC] . (A.lO)

3 1
4 1

Here eapcop is an anti-symmetric tensor with €934 = 1. The correlators including world-

sheet fermions are

(W (y1)Sa(2)Sp(2)) = % Y g —2) 2 —2) 2 (z—2)75, (A1)

W (y1)¥° (y2)Sa(2)Sp(2))

b

S
=

)

(g2 —2)737(z - 2)

s [ a0 — ) F o = = 9]
5 [EOF s = b - 2 - 9]
e [EF ©ane -9 -9 -] (A

b

where we have defined (Eab) 2= % ((EQ)AC (E)P — () ac (EG)CB)- The following for-

mulas are valid only when they are contracted with the (S,S)-type background C' (aB)(AB),

(575¢(y1)5*S” (y2) 9 (y3)SaS4(2)SpSp(2))

= %gvﬁ(o“)ad@a)mé%(yl — o) (g —2) " F(y — 2) 7T (g1 — o)
X(yo—2) (Y2 —2) 1 (ys —2) Hys —2) Nz —2)T1(z - 2)%  (A13)

(WP (1)1 P ()t (y3) SaSa(2) S5.SB(2))
_ _ﬁ(gu)ad(UV)%(iazbic)AB
(g —2) "y —2) Ny —2) My — 2) " Mys — 2) 3 (ys — 2) 3 (2 — 2)1(A.14)

(W ¥°(y1)Sc(y2)Sp(y3)Sa(2)SB(2))

= (@) eopan gy [ = ) — 2o~ 2w — s~ 2)(z = 2))
(A.15)

IS

B. N =4 super Yang-Mills theory on N = 1/2 superspace

In this appendix we calculate the Lagrangian of N' = 4 super Yang-Mills theory defined on
N = 1/2 superspace. In terms of N' = 1 superfields, this theory is constructed by a vector
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superfield V(z,6,0) and three chiral superfields ®;(y,6) (i = 1,2,3) which belong to the
adjoint representation of the gauge group U(/N). The deformed Lagrangian [14] is defined
by
1 3
ﬁjcv:A‘ =2 /d20d20 Trz (Ei xeV % ; x e_V)
i=1
1 1 - —  —a
———— [POTT (W Wo) + ——— [df Tt (WasxW
AT / rWE s Wo) + o2 / r (WaxT7°)
_\/_—QYTM /d29 Tre'® (@, « P« D) + \/——QYTM /d29_ Tre'® (61- * *Ek) .
(B.1)
Here the star product is defined by f(0) * g(0) = f(0) exp [——Co‘ﬁQaQB] g9(0). Q. is the
supercharge defined on the superspace. It is convenient to redefine the component fields

of a superfield such that they transform canonically under the gauge transformation. The

expansion of the chiral superfield is the same as the undeformed one:
iy, 0) = ¢ily) +iv200;(y) + 00F;(y). (B2)
The anti-chiral superfield is expanded as [P]
Bi(5.0) = Gu0) 4V 2000)+ 80 Fi)+C™ 0, 5. A1)~ B0 4y (410 611) )
(B.3)

where we have defined C* = C*eg., (), . The vector superfield in the Wess-Zumino

gauge is [
V(y,0,8) = —00" G A, (y) + i099A(y) — 100" <>\ (1) + TeapC ot (X0, M}@,))
+%999_9_ (D(y) —i0,A"(y)) . (B.4)

Rescaling appropriately component fields and C*? by gauge coupling constant gy, we
find that Lagrangian (B.1) becomes

Lh=t = 2 Tr —lFMVF“” — EFWFW — D"$;Dydi + FiF; + 1p? (B.5)
kg 2
—zw Dy — iAGP D\ —iv/2 [qm,wz] — iV2[¢s, i)\ + D[y, ¢i]
——C“”FW)\)\—i— —\Cy (A2 + 50"” Fu{¢i, Fi}

B B 1 L
Y2 0Dy, (0 R — IO, IR
VB ( Ry = oyt~ G5ICPRE R - 50 Fiatha )

VB (b= Bulyi + SOW Buibid+ 1OVD,8D,316 )|
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Integrating out the auxiliary fields we get

4

_ 1 1 1= o - -
LY== —Tx [——FWF“” = 3 F" Fuy — A DX — ithi# Dy — DV 6Dty

kg%(M

—iV/2[fi, YA — iV2[y, i A —

| =

—%C“”FWXX + %ycﬁ(m? - gcaﬁ{Dm, (@ Na i
g o ; _ 1 -
—\/2eik <—¢z‘7/)j7/)k + iy + %C“”FW@%% - gC“"Duqszu%’qbk)

G, Byt + Y2 ICPET G, MR 1

o CPI 5, )y Byl ) (5.6)

We note that the term —C5[¢;, ¢i]tiathjp in the 5th line is absent in [14]. The relation
between scalar fields ¢, and ¢; is given by

1 - { - .
P21 = NG (i + i), @2 = NG (i — i), (i=1,2,3). (B.7)
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