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1. Introduction

Ramond-Ramond (R-R) background in type II superstring theories plays an important

role in studying effective theories on the D-branes. In particular constant graviphoton

background induces non(anti)commutativity in world-volume superspace [1 – 3]. N = 1

super Yang-Mills theory on non(anti)commutative superspace (N = 1/2 superspace) [4] is

obtained from type IIB superstrings with constant graviphoton background compactified

on a Calabi-Yau threefold. The deformed action was constructed explicitly in [5] from open

string amplitudes in type IIB superstring theory compactified on an orbifold C3/Z2 × Z2

in graviphoton background.

Non(anti)commutative N = 2 harmonic superspace provides various types of deformed

N = 2 supersymmetric gauge theories [6 – 10]. In a previous paper [11], two of the present

authors studied the deformation of N = 2 supersymmetric Yang-Mills theory from the

open string disk amplitudes with one graviphoton vertex operator in type IIB superstring

theory. The deformed N = 2 super Yang-Mills theory is realized as the low-energy effective

theory on the D3-branes in the type IIB superstrings compactified on C2/Z2 with constant

graviphoton background. The constant R-R backgrounds Fαβij are classified into four

types of deformations (S,S), (S,A), (A,S) and (A,A)-types, in which (S,S) and (A,A)-types

deformations are related to the deformation of N = 2 superspace. By choosing the (S,S)-

type graviphoton background and the appropriate scaling condition, it was shown that the
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effective Lagrangian on the D3-branes becomes the deformed one in non(anti)commutative

N = 2 harmonic superspace at the lowest order in deformation parameters.

It is an interesting problem to extend this deformation to N = 4 case. Since super-

space formalism keeping N = 4 supersymmetry manifestly is not yet known, superstring

approach provides a systematic method for understanding general non(anti)commutative

deformation of N = 4 theory. The couplings between R-R fields and the world-volume

massless fields on the Dp-branes have been studied in [12, 13], which are written in the

form of the Chern-Simons action. In recent papers [14], by restricting the constant five-

form background to the deformation parameter of N = 1/2 superspace, it is shown that

the bosonic part of the Chern-Simons action reduces to the deformed interaction terms

of the N = 4 super Yang-Mills theory in N = 1/2 superspace. The interaction terms

including fermions are constructed by the supersymmetric completion [14] using remaining

supersymmetries but disagree with the deformed action based on non(anti)commutative

superspace.

In this paper we will study the deformation of N = 4 supersymmetric Yang-Mills

theory from open string amplitudes in the constant R-R graviphoton background. We

put the D3-branes in type IIB superstrings in flat ten-dimensional (Euclidean) space-time.

We will compute open superstring disk amplitudes with one graviphoton vertex operator

and determine the low-energy effective Lagrangian at the first order in the deformation

parameter C. We will find the effective action in a special graviphoton background agrees

with the deformed action defined on non(anti)commutative N = 1 superspace at the first

order in C. We will also confirm that the bosonic terms deformed by C in the effective

action is in agreement with the Chern-Simons term of D3-brane effective action [14].

The action contains new scalar potential terms deformed by C. This term corresponds

to the Myers term [12] which gives rise to a dielectric configuration for scalar fields. In

the N = 1/2 superspace formalism, this type of configuration was found in [14]. In the

present paper, we will explore the fuzzy two-sphere configuration for the scalar fields in

the presence of constant U(1) gauge fields, based on general (S,S)-type deformed action.

This paper is organized as follows: in section 2, we review D3-brane realization of N =

4 super Yang-Mill theory in type IIB superstring theory and classify the R-R background.

In section 3, we calculate the disk amplitudes with one closed string graviphoton vertex

operator and the effective action on the D3-branes. In section 4, we study the vacuum

configuration of the deformed N = 4 theory and find the fuzzy two-sphere configuration

for scalar fields. In appendix A, we summarize some useful formulas to calculate the open

string disk amplitudes. The deformed N = 4 super Yang-Mills theory defined on N = 1

non(anti)commutative superspace is presented in appendix B.

2. D3-brane realization of N = 4 super Yang-Mills theory

In this section we review the D3-brane realization of N = 4 super Yang-Mills theory [15].

2.1 Type IIB superstrings

We begin with explaining type IIB superstrings in flat space-time. We will use the NSR
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formalism. Let Xm(z, z̄), ψm(z) and ψ̃m(z̄) (m = 1, · · · , 10) be free bosons and fermions

with world-sheet coordinates (z, z̄). Their operator product expansions (OPEs) are given

by Xm(z)Xn(w) ∼ −δmn ln(z − w) and ψm(z)ψn(w) ∼ δmn/(z − w). Here the space-time

signature is Euclidean. Fermionic ghost system (b, c) with conformal weight (2,−1) and

bosonic ghost system (β, γ) with weight (3/2,−1/2) are also introduced. The world-sheet

fermions ψm(z) are bosonized in terms of free bosons φa(z) (a = 1, · · · , 5) by

f±ea(z) ≡ 1√
2
(ψ2a−1 ∓ iψ2a) =: e±φa

(z) : cea . (2.1)

Here φa(z) satisfy the OPE φa(z)φb(w) ∼ δab ln(z −w) and the vectors ea are orthonormal

basis in the SO(10) weight lattice space and cea is a cocycle factor [16]. The bosonic

ghost is also bosonized [17]: β = ∂ξe−φ, γ = eφη with OPE φ(z)φ(w) ∼ − ln(z − w).

The R-sector is constructed from spin fields Sλ(z) = eλφ(z)cλ, where φ = φaea and λ =
1
2 (±e1±e2±e3±e4±e5). λ belongs to the spinor representation of SO(10). cλ is a cocycle

factor. In type IIB theory, after the GSO projection, we have spinor fields which have odd

number of minus signs in λ, for both left and right movers.

We now introduce parallel N D3-branes in the (x1, · · · , x4)-directions. Since the D3-

branes breaks the ten-dimensional Lorentz symmetry SO(10) to SO(4) × SO(6), the spin

field Sλ(z) is decomposed as (SαSA, Sα̇SA), where Sα and Sα̇ (α, α̇ = 1, 2) are four-

dimensional Weyl spinor and SA and SA (A = 1, 2, 3, 4) are six-dimensional Weyl spinor.

SA (SA) belongs to the (anti-)fundamental representation of SU(4). The Dirac matrices

for four dimensional part are σµ = (iτ1, iτ2, iτ3, 1) and σ̄µ = (−iτ1,−iτ2,−iτ3, 1), where

τ i (i = 1, 2, 3) are the Pauli matrices. The Lorentz generators are defined by σµν =
1
4 (σµσ̄ν − σν σ̄µ) and σ̄µν = 1

4(σ̄µσµ − σ̄νσµ).

The gamma matrices for six-dimensional part are given by

Σa =
(

η3,−iη̄3, η2,−iη̄2, η1, iη̄1
)

, Σ̄a = (−η3,−iη̄3,−η2,−iη̄2,−η1, iη̄1), (2.2)

where a = 1, · · · , 6. ηa
µν and η̄a

µν are ’t Hooft symbols, which are defined by σµν = i
2ηa

µντ
a

and σ̄µν = i
2 η̄a

µντa. The matrices (2.2) satisfy the algebra

(Σa)AB(Σ̄b)BC + (Σb)AB(Σ̄a)BC = 2δabδA
C . (2.3)

The massless spectrum of open strings contain gauge fields Aµ, six scalars ϕa in the

NS sector and gauginos ΛαA and Λ̄α̇A in the R sector. The vertex operators for gauge and

scalar fields in the (−1) picture are given by

V
(−1)
A (y; p) = (2πα′)

1

2

Aµ(p)√
2

ψµ(y)e−φ(y)ei
√

2πα′p·X(y),

V (−1)
ϕ (y; p) = (2πα′)

1

2

ϕa(p)√
2

ψa(y)e−φ(y)ei
√

2πα′p·X(y), (2.4)

while in the 0 picture, they are given by

V
(0)
A (y; p) = 2i(2πα′)

1

2 Aµ(p)
(

∂Xµ(y) + i(2πα′)
1

2 p · ψψµ(y)
)

ei
√

2πα′p·X(y),

V (0)
ϕ (y; p) = 2i(2πα′)

1

2 ϕa(p)
(

∂Xa(y) + i(2πα′)
1

2 p · ψψa(y)
)

ei
√

2πα′p·X(y). (2.5)
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The gaugino vertex operators in the (−1/2) picture are

V
(−1/2)
Λ (y; p) = (2πα′)

3

4 ΛαA(p)Sα(y)SA(y)e−
1

2
φ(y)ei

√
2πα′p·X(y),

V
(−1/2)

Λ
(y; p) = (2πα′)

3

4 Λα̇A(p)Sα̇(y)SA(y)e−
1

2
φ(y)ei

√
2πα′p·X(y). (2.6)

We adapt dimensionless four-momentum
√

2πα′p to ensure that the momentum represen-

tation of a field has same dimension of space-time field.

2.2 R-R vertex operator

The vertex operators for massless states in the R-R sector of type IIB superstrings are

constructed from the tensor product of spin fields (SαSA, Sα̇SA) and (S̃βS̃B , S̃β̇S̃B). We

will study the effect of constant R-R background, which is described by the closed string

vertex operator

V
(−1/2,−1/2)
F (z, z̄) = (2πα′)

3

2FαβABSαSAe−
1

2
φ(z)S̃β S̃Be−

1

2
φ̃(z̄). (2.7)

We note that general massless closed string states in the R-R sector contain the field

strength of types Fα
α̇

A
B , Fα̇

α
A

B, and Fα̇β̇AB. Since the vertex operator (2.7) provides

a generalization of the deformations of N = 2 non(anti)commutative superspace [11], we

will consider this type of deformation in the present work.

As in the N = 2 case [11], the field strength is decomposed as

FαβAB = F (αβ)(AB) + F (αβ)[AB] + F [αβ](AB) + F [αβ][AB]. (2.8)

Here the parenthesis (AB) represents symmetrization of indices A and B. [AB] represents

anti-symmetrization. We call these backgrounds (S,S), (S,A), (A,S), (A,A)-type deforma-

tions respectively. We now examine the correspondence between the field strength FαβAB

and the p-form R-R field strengths in type IIB superstrings.

For four-dimensional sector, the tensor fαβ can be decomposed into the singlet and

the self-dual tensor parts:

fαβ = εαβf + (σµν)αβfµν . (2.9)

The first term corresponds to antisymmetric part and the second to the symmetric part.

For six-dimensional sector, the spinor indices are labeled by the fundamental repre-

sentation 4 of SU(4). The tensor product 4 ⊗ 4 can be decomposed into 6 ⊕ 10, which

corresponds to the vector or the self-dual 3-form representation, respectively. In fact, the

tensor gAB is expressed as

gAB = (Σa)ABga + (Σabc)ABgabc. (2.10)

Here we define a matrix which is totally antisymmetric with respect to the space indices

of abc,

(Σabc)AB ≡ (Σ[aΣ̄bΣc])AB . (2.11)
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The first term in (2.10) corresponds to the antisymmetric part and the second to the

symmetric part. The matrix Σabc is self-dual:

(Σabc)AB =
i

3!
εabcdef (Σdef )AB , (2.12)

and consequently the three-form gabc also satisfies the self-dual condition,

gabc =
i

3!
εabcdefgdef . (2.13)

From the decompositions (2.9) and (2.10), we find that the FαβAB can be decomposed

into

FαβAB =
(

εαβf + (σµν)αβfµν

)

×
(

(Σa)AB ga + (Σabc)AB gabc

)

= fgaε
αβ(Σa)AB + fgabcε

αβ(Σabc)AB + fµνga(σ
µν)αβ(Σa)AB

+fµνgabc(σ
µν)αβ(Σabc)AB, (2.14)

which corresponds to

FαβAB
∼ (R-R 1-form) ⊕ (R-R 3-form) ⊕ (R-R 3-form) ⊕ (R-R 5-form). (2.15)

The decomposition (2.14) shows that the (A,A) deformation corresponds to the R-R 1-

form, the (A,S) and (S,A) deformations to the R-R 3-forms, and the (S,S) deformation to

the R-R self-dual 5-form. In fact, if we identify the self-dual five-form field strength Fmnpqr

as

Fµνabc = fµνg
abc, (2.16)

then it satisfies the self-dual condition in the 10-dimensional space,

Fµνabc =
i

2!3!
εµνabcρσdef Fρσdef . (2.17)

We note that the similar decomposition holds in the case of the deformation of N = 2

super Yang-Mills theory [11], which is constructed from the type IIB superstrings com-

pactified on C × C2/Z2.

2.3 Disk amplitudes and auxiliary field method

The action of N = 4 supersymmetric Yang-Mills theory is obtained by evaluating correla-

tion functions of the vertex operators given in equations (2.4), (2.5), (2.6). Let us consider

disk amplitudes with boundary attached on the D3-brane world volume. The disk is re-

alized as the upper half of complex plane. The boundary condition of the spin field [15]

is

SαSA(z) = S̃αS̃A(z̄)
∣

∣

∣

z=z̄
. (2.18)

The disk amplitudes can be calculated by replacing S̃αS̃A(z̄) by SαSA(z̄) in the correlator.

The n + 2nF -point disk amplitude for n vertex operators V
(qi)
Xi

(yi) and nF R-R vertex

operators V
(− 1

2
,− 1

2
)

F (zj , z̄j) is given by

〈〈V (q1)
X1

· · ·V (− 1

2
,− 1

2
)

F · · · 〉〉 = CD2

∫

∏n
i=1 dyi

∏nF

j=1 dzjdz̄j

dVCKG
〈V (q1)

X1
(y1) · · ·V

(− 1

2
,− 1

2
)

F (z1, z̄1) · · · 〉.
(2.19)
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Here CD2
is the disk normalization factor [18]:

CD2
=

1

2π2(α′)2
1

kg2
YM

(2.20)

and gYM is the gauge coupling constant. k is a normalization constant of U(N) generators

T a: Tr(T aT b) = kδab. dVCKG is an SL(2,R)-invariant volume factor to fix three positions

x1, x2 and x3 among yi, zj ,and z̄j’s:

dVCKG =
dx1dx2dx3

(x1 − x2)(x2 − x3)(x3 − x1)
. (2.21)

The open string amplitudes in the zero slope limit show that the effective action on

the D3-branes is that of N = 4 super Yang-Mills theory:

LN=4
SYM =

1

k

1

g2
YM

Tr

[

−1

4
Fµν

(

Fµν + F̃µν

)

− iΛαA(σµ)αβ̇DµΛ
β̇
A − 1

2
(Dµϕa)

2

+
1

2
(Σa)AB Λα̇A[ϕa,Λ

α̇
B ] +

1

2

(

Σ
a)

AB
ΛαA[ϕa,Λ

B
α ] +

1

4
[ϕa, ϕb]

2

]

, (2.22)

where

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ],

Dµϕa = ∂µϕa + i[Aµ, ϕa], (2.23)

and Aµ = Aa
µT a etc. F̃µν is the dual of Fµν .

We use the auxiliary field method [5, 11] to simplify the string amplitudes including

contact terms. We introduce the auxiliary fields Hc = ηc
µνHµν , Hµa and Hab and rewrite

the action (2.22) into the form

LSYM =− 1

g2
YM

1

k
Tr

[

1

2
(∂µAν − ∂νAµ)∂µAν + i∂µAν [A

µ, Aν ] +
1

2
HcH

c +
1

2
Hcη

c
µν [Aµ, Aν ]

]

− 1

g2
YM

1

k
Tr

[

1

2
HabHab +

1√
2
Hab[ϕa, ϕb]

]

− 1

g2
YM

1

k
Tr

[

1

2
∂µϕa∂

µϕa + i∂µϕa[A
µ, ϕa] +

1

2
HµaH

aµ + Hµa[A
µ, ϕa]

]

(2.24)

− 1

g2
YM

1

k
Tr

[

iΛAσµDµΛ̄A − 1

2
(Σa)AB Λα̇A[ϕa,Λ

α̇
B ] − 1

2

(

Σ
a)

AB
ΛαA[ϕa,Λ

B
α ]

]

.

All quartic interactions in (2.22) are replaced by cubic ones. The vertex operators for

auxiliary fields are given by

V
(0)
HAA

(y) =
1

2
(2πα′)Hµν(p)ψνψµei

√
2πα′p·X(y),

V
(0)
HAϕ

(y; p) = 2(2πα′)Hµa(p)ψµψa(y)ei
√

2πα′p·X(y),

V
(0)
Hϕϕ

(y; p) = − 1√
2
(2πα′)Hab(p)ψaψb(y)ei

√
2πα′p·X(y). (2.25)
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3. Disk amplitudes in the constant graviphoton background

In this section we calculate disk amplitudes including one graviphoton vertex operator in the

zero-slope limit and study the deformed N = 4 super Yang-Mills action at the order O(F).

As in the N = 1 [5] and N = 2 [19, 11] cases, the deformed action depends on the

scaling condition for the graviphoton field strength. In this paper we fix the zero-slope

scaling of R-R field strength as

(2πα′)
3

2FαβAB ≡ CαβAB = fixed. (3.1)

In this scaling, the parameter CαβAB has mass dimension −1, which is the same dimension

as the deformation parameters in non(anti)commutative superspace. We will also focus

on the (S,S)-type background F (αβ)(AB), which corresponds to the self-dual R-R 5-form

background and is expected to give a generalization of non-singlet deformation of N = 2

superspace [11].

When the R-R vertex operator (2.7) is inserted in the disk, the charge conservation

for internal spin fields restricts possible insertions of the open string vertex operators. In

fact, the operators of types ΛΛ, ΛΛϕ and ϕϕϕ cancel the internal charge of the R-R vertex

operator. In the zero slope limit with the scaling condition (3.1), we find that the following

amplitudes become nonzero in the (S,S)-type background:

〈〈V (0)
A V

(−1/2)

Λ
V

(−1/2)

Λ
V

(−1/2,−1/2)
F 〉〉+〈〈V (0)

HAA
V

(−1/2)

Λ
V

(−1/2)

Λ
V

(−1/2,−1/2)
F 〉〉, (3.2)

〈〈V (−1/2)
Λ V

(−1/2)

Λ
V (0)

ϕ V
(−1/2,−1/2)
F 〉〉+〈〈V (−1/2)

Λ V
(−1/2)

Λ
V

(0)
Hϕ

V
(−1/2,−1/2)
F 〉〉, (3.3)

〈〈V (0)
ϕ V (0)

ϕ V (−1)
ϕ V

(−1/2,−1/2)
F 〉〉+〈〈V (0)

HAϕ
V (0)

ϕ V (−1)
ϕ V

(−1/2,−1/2)
F 〉〉+〈〈V (0)

HAϕ
V

(0)
HAϕ

V (−1)
ϕ V

(−1/2,−1/2)
F 〉〉,

(3.4)

〈〈V (0)
A V

(0)
Hϕϕ

V (−1)
ϕ V

(−1/2,−1/2)
F 〉〉+〈〈V (0)

HAA
V

(0)
Hϕϕ

V (−1)
ϕ V

(−1/2,−1/2)
F 〉〉, (3.5)

〈〈V (0)
Hϕϕ

V
(−1/2)
Λ V

(−1/2)
Λ V

(−1/2,−1/2)
F 〉〉. (3.6)

As in the N = 1 [5] and N = 2 [11] cases, gauge invariance in the effective action is

ensured by the fact that the derivative ∂µAν or ∂µϕa appears together with auxiliary fields

Hµν and Hµa, respectively. The derivative terms turn out to be covariant derivatives

after integrating out auxiliary fields. Appropriate weight factors of the amplitudes must

be taken into account to keep the gauge invariance of the results. We now compute the

amplitudes (3.2)–(3.5) explicitly.

〈〈VAV
Λ

V
Λ
VF〉〉 + 〈〈VHAA

V
Λ

V
Λ
VF〉〉. The first term of the amplitudes (3.2) is given by

〈〈V (0)
A (p1)V

(−1/2)

Λ
(p2)V

(−1/2)

Λ
(p3)V

(−1/2,−1/2)
F 〉〉 (3.7)

=
1

2π2α′2
1

kg2
YM

(2i)(2πα′)3Tr
[

Aµ(p1)Λα̇C(p2)Λβ̇D(p3)
]

F (αβ)(AB)

×
∫

∏

j dyjdzdz̄

dVCKG
〈e− 1

2
φ(y1)e−

1

2
φ(y2)e−

1

2
φ(z)e−

1

2
φ(z̄)〉〈SC(y1)S

D(y2)SA(z)SB(z̄)〉

×
〈

(

∂Xµ(y1) + i(2πα′)
1

2 p1νψ
νψµ(y1)

)

Sα̇(y2)S
β̇(y3)Sα(z)Sβ(z̄)

3
∏

j=1

ei
√

2πα′pj ·X(yj)

〉

.
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We note that ∂Xµ in the last correlator of (3.8) does not contribute to the amplitude

because of symmetric property of F (αβ)(AB). The correlation functions are calculated by

using bosonization formulas summarized in appendix A. We then perform the world-sheet

integral of the form

∫ ∞

−∞
dy2

∫ y2

−∞
dy3

(z − z̄)2

(y2 − z)(y2 − z̄)(y3 − z)(y3 − z̄)
= (2i)2

π2

2
(3.8)

which is done by fixing the world-sheet coordinates to z = i, z̄ = −i, y1 → ∞. The

amplitude becomes

〈〈V (0)
A (p1)V

(−1/2)

Λ
(p2)V

(−1/2)

Λ
(p3)V

(−1/2,−1/2)
F 〉〉

= − 4π2i

kg2
YM

Tr
[

(σµν)αβip1[µAν](p1)Λα̇A(p2)Λ
α̇
B(p3)

]

(2πα′)
3

2F (αβ)(AB). (3.9)

The second term in (3.2) can be evaluated in the same way. The result is

〈〈V (0)
HAA

(p1)V
(−1/2)

Λ
(p2)V

(−1/2)

Λ
(p3)V

(−1/2,−1/2)
F 〉〉

= − 1

2i

1

2

8π2i

kg2
YM

Tr
[

(σµν)αβHµν(p1)Λα̇A(p2)Λ
α̇
B(p3)

]

(2πα′)
3

2F (αβ)(AB). (3.10)

We need to add another color order contribution, which actually gives the same result

and cancels the symmetric factor 1/2!. The interaction terms in the effective Lagrangian

obtained from the amplitudes (3.9) and (3.10) are given by

L1 =
4π2i

kg2
YM

Tr

[

(σµν)αβ

(

∂[µAν] −
i

2
Hµν

)

Λα̇AΛ
α̇
B

]

(2πα′)
3

2F (αβ)(AB). (3.11)

〈〈VΛV
Λ
VϕVF〉〉 + 〈〈VΛV

Λ
VHAϕ

VF〉〉 . The first term in the amplitudes (3.3) is given by

〈〈V (−1/2)
Λ (p1)V

(−1/2)

Λ
(p2)V

(0)
ϕ (p3)V

(−1/2,−1/2)
F 〉〉

=
1

2π2α′2
1

kg2
YM

(2i)(2πα′)3Tr
[

ΛγC(p1)Λβ̇D(p2)ϕa(p3)
]

F (αβ)(AB)

×
∫

∏

j dyjdzdz̄

dVCKG
〈e− 1

2
φ(y1)e−

1

2
φ(y2)e−

1

2
φ(z)e−

1

2
φ(z̄)〉

×
〈

SγSC(y1)S
β̇SD(y2)

(

∂Xa(y3) + i(2πα′)
1

2 p3µψµψa(y3)
)

×SαSA(z)SβSB(z̄)
3

∏

j=1

ei
√

2πα′pj ·X(yj)

〉

. (3.12)

Here ∂Xa does not contribute to the amplitude for the (S,S)-type background. Using the

formula for the five point function of spin fields in appendix A, we obtain

〈〈V (−1/2)
Λ (p1)V

(−1/2)

Λ
(p2)V

(0)
ϕ (p3)V

(−1/2,−1/2)
F 〉〉

=
4π2i

kg2
YM

Tr
[

Λ C
α (p1)(Σ

a
)ACΛα̇B(p2)(σ

µ) α̇
β ip3µϕa(p3)

]

(2πα′)
3

2F (αβ)(AB). (3.13)
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The amplitude which includes the auxiliary field Hµa is given by

〈〈V (−1/2)
Λ (p1)V

(−1/2)

Λ
(p2)V

(0)
HAϕ

(p3)V
(−1/2,−1/2)
F 〉〉

=
2

2i

4π2i

kg2
YM

Tr
[

Λ C
α (p1)(Σ

a
)ACΛα̇B(p2)(σ

µ) α̇
β Hµa(p3)

]

(2πα′)
3

2F (αβ)(AB). (3.14)

Another color order contribution needs to be added. These amplitudes are obtained from

the interaction

L2 =
4π2i

kg2
YM

Tr
[{

(σµ) α̇
α (∂µϕa − iHµa) ,Λα̇A

}

(Σ
a
)BCΛ C

β

]

(2πα′)
3

2F (αβ)(AB). (3.15)

〈〈VϕVϕVϕVF〉〉 + 〈〈VHAϕ
VHAϕ

VϕVF〉〉 + 〈〈VHAϕ
VHAϕ

VϕVF〉〉. The first term in (3.4)

is given by

〈〈V (0)
ϕ (p1)V

(0)
ϕ (p2)V

(−1)
ϕ (p3)V

(−1/2,−1/2)
F 〉〉

=
1

2π2α′2
1

kg2
YM

(2i)2
1√
2
(2πα′)

5

2 Tr [ϕa(p1)ϕb(p2)ϕc(p3)]F (αβ)(AB)

×
∫

∏

j dyjdzdz̄

dVCKG
〈e−φ(y3)e−

1

2
φ(z)e−

1

2
φ(z̄)〉

×
〈(

∂Xa(y1) + i(2πα′)
1

2 p1µψµψa(y1)
) (

∂Xb(y2) + i(2πα′)
1

2 p2νψ
νψb(y2)

)

× ψc(y3)Sα(z)Sβ(z̄)SA(z)SB(z̄)SB(z̄)
3

∏

j=1

ei
√

2πα′pj ·X(yj)

〉

. (3.16)

In the above amplitudes the term containing ∂Xa∂Xb gives the contribution 〈SαSβ〉 ∼ εαβ ,

which becomes zero after the contraction with the (S,S)-type background. The terms

containing the single ∂X do not contribute to the amplitude due to 〈SαψµSβ〉 = 0. We

obtain

〈〈V (0)
ϕ (p1)V

(0)
ϕ (p2)V

(−1)
ϕ (p3)V

(−1/2,−1/2)
F 〉〉 (3.17)

= − 4π2

kg2
YM

Tr
[

(σµν)αβ(Σ
a
ΣbΣ

c
)ABip1µϕa(p1)ip2νϕb(p2)ϕc(p3)

]

(2πα′)
3

2F (αβ)(AB).

The amplitudes including auxiliary fields can be calculated in a similar way. Multiplying

appropriate weight and symmetric factors, the interaction terms in the Lagrangian are

shown to become

L3 =
1

3

4π2

kg2
YM

Tr
[

(σµν)αβ(Σ
a
ΣbΣ

c
)AB∂µϕa∂νϕbϕc

]

(2πα′)
3

2F (αβ)(AB)

+
1

3

2

2i

4π2

kg2
YM

Tr
[

(σµν)αβ(Σ
a
ΣbΣ

c
)AB{Hµa, ∂νϕb}ϕc

]

(2πα′)
3

2F (αβ)(AB)

+
1

3

22

(2i)2
4π2

kg2
YM

Tr
[

(σµν)αβ(Σ
a
ΣbΣ

c
)ABHµaHνbϕc

]

(2πα′)
3

2F (αβ)(AB). (3.18)
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〈〈VAVHϕϕVϕVF〉〉 + 〈〈VHAA
VHϕϕVϕVF〉〉. Now we compute the amplitude (3.5). The

first term in (3.5) is given by

〈〈V (0)
A (p1)V

(0)
Hϕϕ

(p2)V
(−1)
ϕ (p3)V

(−1/2,−1/2)
F 〉〉

=
1

2π2α′2
1

kg2
YM

(2i)

(

− 1√
2

)

1√
2
(2πα′)3Tr [Aµ(p1)Hab(p2)ϕc(p3)]F (αβ)(AB)

×
∫

∏

j dyjdzdz̄

dVCKG
〈e−φ(y3)e−

1

2
φ(z)e−

1

2
φ(z̄)〉〈ψaψb(y2)ψ

c(y3)SA(z)SB(z̄)〉

×
〈

(

∂Xµ(y1) + i(2πα′)
1

2 p1νψ
νψµ(y1)

)

Sα(z)Sβ(z̄)
3

∏

j=1

ei
√

2πα′pj ·X(yj)

〉

. (3.19)

The term including ∂X does not contribute to the amplitude for the (S,S)-type background

again. Evaluating the correlation functions, we obtain

〈〈V (0)
A (p1)V

(0)
Hϕϕ

(p2)V
(−1)
ϕ (p3)V

(−1/2,−1/2)
F 〉〉

=
i
√

2π2

kg2
YM

Tr
[

(σµν)αβ(Σ
a
ΣbΣ

c
)ABip1µAν(p1)Hab(p2)ϕc(p3)

]

(2πα′)
3

2F (αβ)(AB).

(3.20)

Taking into account other color ordered contributions and adding the second term in (3.5),

the interaction terms become

L4 = −
√

2π2i

kg2
YM

Tr

[

(σµν)αβ(Σ
a
ΣbΣ

c
)AB

(

∂[µAν] −
i

2
Hµν

)

{Hab, ϕc}
]

(2πα′)
3

2F (αβ)(AB). (3.21)

〈〈VHϕϕVΛVΛVF〉〉. This amplitude is given by

〈〈V (0)
Hϕϕ

(p1)V
(−1/2)
Λ (p2)V

(−1/2)
Λ (p3)V

(−1/2,−1/2)
F 〉〉

=
1

2π2α′2
1

kg2
YM

(2πα′)2+
3

2

(

− 1√
2

)

Tr
[

Hab(p1)Λ
γC(p2)Λ

δD(p3)
]

F (αβ)(AB)

×
∫

∏

j dyjdzdz̄

dVCKG
〈e− 1

2
φ(y2)e−

1

2
φ(y3)e−

1

2
φ(z)e−

1

2
φ(z̄)〉

×〈ψaψb(y1)SC(y2)SD(y3)SA(z)SB(z̄)〉〈Sγ(y2)Sδ(y3)Sα(z)Sβ(z̄)〉. (3.22)

Using the formula (A.15) in the appendix A, we get

〈〈V (0)
ϕϕ (p1)V

(−1/2)
Λ (p2)V

(−1/2)
Λ (p3)V

(−1/2,−1/2)
F 〉〉 (3.23)

=
2
√

2π2

kg2
YM

Tr
[

(Σ
ab

) A′

A εCDA′BHab(p1)Λ
C

α (p2)Λ
D

β (p3)
]

(2πα′)
3

2F (αβ)(AB).

Adding the color ordered amplitude and considering weight and phase factors, we find that

the interaction term is

L5 = −2
√

2π2i

kg2
YM

Tr
[

(Σ
ab

) A′

A εCDA′BHabΛ
C

α Λ D
β

]

(2πα′)
3

2F (αβ)(AB). (3.24)
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To summarize, the first order correction to the N = 4 super Yang-Mills action from

the (S,S)-type graviphoton background is

L(1)
(S,S) = L1 + L2 + L3 + a1L4 + a2L5. (3.25)

Here we have introduced additional weight factors a1 and a2, which should be determined

by higher point disk amplitudes without auxiliary fields. In this paper we will determine

these weight factors such that the deformed Lagrangian is consistent with the one defined

on N = 1/2 superspace.

By integrating out the auxiliary fields and defining the deformation parameter C by

C(αβ)(AB) ≡ −8π2(2πα′)
3

2F (αβ)(AB), we find the deformed Lagrangian is expressed as

L = LN=4
SYM + L(1)

(S,S) + O(C2) (3.26)

where LN=4
SYM is the ordinary N = 4 super Yang-Mills action (2.22) and

L(1)
(S,S) = − i

2

1

kg2
YM

Tr
[

FµνΛα̇AΛ
α̇
B

]

Cµν(AB)

− i

2

1

kg2
YM

Tr
[{

Dµϕa, (σ
µ)αα̇Λ

α̇
A

}

(Σ
a
)BCΛ C

β

]

C(αβ)(AB)

−1

6

1

kg2
YM

Tr
[

(σµν)αβ(Σ
a
ΣbΣ

c
)ABDµϕaDνϕbϕc

]

C(αβ)(AB)

− i

3

a1

kg2
YM

Tr
[

(σµν)αβ(Σ
a
ΣbΣ

c
)ABFµνϕaϕbϕc

]

C(αβ)(AB)

− i

4

a2

kg2
YM

Tr
[

(Σ
ab

) A′

A εA′BCDϕaϕbΛ
C

α Λ D
β

]

C(αβ)(AB). (3.27)

Here Cµν(AB) is defined by Cµν(AB) = C(αβ)(AB)εβγ(σµν) γ
α . We note that the bosonic

terms in (3.27) gives the ones obtained from the Chern-Simons term [12] in the R-R 4-form

potential

SCS =
1

6kg2
YM

∫

M4

d4x Tr [ϕaDµϕbDνϕc − iϕaϕbϕcFµν ] (2πα′)
3

2Fµνabc, (3.28)

where the self-dual 5-form field strength is defined by Fµνabc =

−(σµν)αβ(Σ
a
ΣbΣ

c
)ABC(αβ)(AB). This Chern-Simons term was also derived from the

N = 4 super Yang-Mills theory on non(anti)commutative N = 1 superspace [14] (see

also appendix B). The reduction to deformed N = 1 superspace is done by restriction

of the deformation parameter C(αβ)(AB) to C(αβ)(11). The deformed Lagrangian (3.27)

agrees with the non(anti)commutative one in [14] if we choose the weight factors to be

a1 = −1
2 , a2 = −4i.

4. Vacuum structure of deformed N = 4 theory

In this section we study the vacuum structure of deformed N = 4 SYM theory based on

the Lagrangian (3.26). For simplicity, we take Λ = Λ = 0, and consider ϕa as constants.
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We also assume that only U(1) part of gauge field strength FU(1)
µν is non-vanishing constant.

In this case, the Lagrangian becomes

Lscalar =
1

kg2
YM

Tr

[

1

4
[ϕa, ϕb]

2 +
i

6
(Σ

a
ΣbΣ

c
)ABFU(1)

µν Cµν(AB)ϕaϕbϕc

]

. (4.1)

The equation of motion is given by

[ϕb, [ϕa, ϕb]] +
i

4
(Σ

a
ΣbΣ

c
)ABFU(1)

µν Cµν(AB)[ϕb, ϕc] = 0. (4.2)

We want to find the solution with the ansatz

[ϕâ, ϕb̂] = iκεâb̂ĉϕĉ, (â, b̂, ĉ = 1, 2, 3),

ϕî = 0 (̂i = 4, 5, 6). (4.3)

Taking the contraction with C(AB), totally antisymmetric part of (Σ
a
ΣbΣ

c
)AB remains.

We find that the equation (4.2) reduces to

[ϕb̂, [ϕâ, ϕb̂]] +
i

4
εâb̂ĉ(F · C)[ϕb̂, ϕĉ] = 0 (4.4)

where (Σ
â
Σb̂Σ

ĉ
)ABCµν(AB) is written as εâb̂ĉMABCµν(AB) for a symmetric matrix MAB

and F · C ≡ FU(1)
µν Cµν(AB)MAB. Applying the ansatz (4.3) we find (4.2) can be rewritten

as
(

κ2 +
1

4
(F · C)κ

)

εâb̂ĉεb̂ĉd̂ϕd̂ = 0. (4.5)

Thus the constant κ should be

(i) κ = 0, (4.6)

(ii) κ = −1

4
(F · C). (4.7)

In the case (i) this gives the ordinary commutative configuration of D3-branes. However,

in the case (ii), due to the non-zero R-R background C, we have the fuzzy two-sphere

configuration [ϕâ, ϕb̂] = iκεâb̂ĉϕĉ. Here we regard ϕâ as the generators of SU(2) subalgebra

embedded in the N -dimensional matrix representation of the gauge group U(N), which are

normalized as ϕâϕâ = t1N×N . The radius of the fuzzy two-sphere is given by

R2 ≡ ϕ2
â = κ2t1N×N . (4.8)

5. Conclusions and discussion

In this paper, we have studied the effects of constant self-dual R-R graviphoton 5-form

background to the U(N) N = 4 super Yang-Mills theory defined on D3-brane world-

volume. We calculated the first order correction to the N = 4 super Yang-Mills action

with fixed (2πα′)
3

2F = C in the zero-slope limit. This scaling gives the same dimension
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as the non(anti)commutativity parameter of deformed superspace. The deformed action

would be defined on the non(anti)commutative N = 4 superspace which is characterized

by the Clifford algebra {θαA, θβB} = C(αβ)(AB). This type of extended fermionic variables

appears in the pure spinor formalism [20 – 22] of superstrings. It would be interesting to

study this deformation by using pure-spinor formalism. This formalism provides also a

useful method to studying higher order graviphoton corrections.

By restricting the R-R 5-form field strength to the N = 1 deformation parameter and

assigning appropriate weight factors to the amplitudes, we found that the effective action

agrees with the one defined on N = 1/2 superspace [14] in our convention. We also found

the fuzzy two-sphere vacuum configuration which is induced by non-zero R-R background

as in [12]. We can do similar calculations for other types of R-R background such as (S,A),

(A,S) and (A,A). As pointed out in [11], the (S,A) and (A,S)-type backgrounds would

not correspond to non(anti)commutative deformation of superspace because their index

structures are different. The (A,A)-type background, which corresponds to R-R 1-form

background, would provide the singlet deformation of N = 2 superspace.

We found that there are no tadpole contribution nor divergent structure of the disk

amplitudes at the lowest order. This suggest that there is no backreaction to the flat

space-time in the constant self-dual graviphoton background. The (A,A) type background,

however, contains tadpole divergence as in the N = 2 case [11]. The flat space-time would

be inconsistent in the (A,A)-type background. A systematic analysis of D-brane dynamics

in constant R-R potential background can be found in [23].

Another interesting issue is to choose different scaling conditions for the R-R back-

ground field strength in the zero-slope limit. For example, in N = 2 case, the (S,A)-type

background with the scaling (2πα′)
1

2F = C is studied in [19]. The R-R three-form is re-

garded as the Ω-background, which was used for the integration over the instanton moduli

space [24]. The C-deformation scaling (2πα′)−
1

2F = C would be also interesting [1]. It

would be interesting to study nonperturbative effects for general constant R-R graviphoton

background.
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A. N = 4 effective rules

In this appendix we summarize some definitions and useful formulas which appear in this

paper.
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We define spin fields in six dimensions by

S1 = e
1

2
φ3+ 1

2
φ4+

1

2
φ5, S1 = e−

1

2
φ3− 1

2
φ4− 1

2
φ5 ,

S2 = ie
1

2
φ3− 1

2
φ4− 1

2
φ5 , S2 = ie−

1

2
φ3+

1

2
φ4+ 1

2
φ5 ,

S3 = i2e−
1

2
φ3+

1

2
φ4− 1

2
vφ5 , S3 = i2e

1

2
φ3− 1

2
φ4+

1

2
φ5,

S4 = i3e−
1

2
φ3− 1

2
φ4+ 1

2
φ5 , S4 = i3e

1

2
φ3+

1

2
φ4− 1

2
φ5 . (A.1)

The correlation functions for ten-dimensional spin fields can be realized as the product

of four-dimensional correlator and six-dimensional ones. Each correlator is expressed in

terms of gamma matrices, which is evaluated by using the effective rules listed below.

We firstly write down the correlation functions for four-dimensional spin fields:

〈Sα(z)Sβ(z̄)〉 = εαβ(z − z̄)−
1

2 , (A.2)

〈Sα̇(y1)S
β̇(y2)〉 = εα̇β̇(y1 − y2)

− 1

2 , (A.3)

〈Sα̇(y1)S
β̇(y2)Sα(z)Sβ(z̄)〉 = εα̇β̇εαβ(y1 − y2)

− 1

2 (z − z̄)−
1

2 , (A.4)

〈Sα(y1)S
β(y2)S

γ(z)Sδ(z̄)〉 = [(y1 − y2)(y1 − z)(y1 − z̄)(y2 − z)(y2 − z̄)(z − z̄)]−
1

2

×
[

εαδεβγ(y1 − z)(y2 − z̄) − εαγεβδ(y2 − z)(y1 − z̄)
]

= [(y1 − y2)(y1 − z)(y1 − z̄)(y2 − z)(y2 − z̄)(z − z̄)]−
1

2

×
[

−εαβεγδ(y1 − z̄)(y2 − z) + εαδεβγ(y1 − y2)(z − z̄)
]

.

(A.5)

The correlators including world-sheet fermions become for example

〈Sα̇(y1)ψ
µ(y2)Sα(y3)〉 =

1√
2
(σ̄µ)α̇α(y1 − y2)

− 1

2 (y2 − y3)
− 1

2 , (A.6)

〈ψµψν(y1)S
α̇(y2)S

β̇(y3)Sα(z)Sβ(z̄)〉

= (y2 − y3)
− 1

2 (z − z̄)−
1

2

[

(σ̄µν)α̇β̇εαβ
(y2 − y3)

(y1 − y2)(y1 − y3)
+ (σµν)αβεα̇β̇ (z − z̄)

(y1 − z)(y1 − z̄)

]

.

(A.7)

Next, the correlators for six-dimensional spin fields used in this paper are

〈SA(z)SB(w)〉 = δA
B(z − w)−

3

4 ,

〈SA(z)SB(w)〉 = 〈SA(z)SB(w)〉 = 0, (A.8)

〈SA(z1)SB(z2)SC(z3)SD(z4)〉 =
εABCD

(z1−z2)
1

4 (z1−z3)
1

4 (z1−z4)
1

4 (z2−z3)
1

4 (z2−z4)
1

4 (z3−z4)
1

4

(A.9)
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and

〈SA(y1)S
B(y2)SC(y3)SD(y4)〉

= (z1 − z2)
− 1

4 (z1 − z3)
− 3

4 (z1 − z4)
− 3

4 (z2 − z3)
− 3

4 (z2 − z4)
− 3

4 (z3 − z4)
− 1

4

×
[

−(z1 − z4)(z2 − z3)δ
A
CδB

D + (z1 − z3)(z2 − z4)δ
A
DδB

C

]

. (A.10)

Here εABCD is an anti-symmetric tensor with ε1234 = 1. The correlators including world-

sheet fermions are

〈ψa(y1)SA(z)SB(z̄)〉 =
1√
2

(

Σ
a)

AB
(y1 − z)−

1

2 (y1 − z̄)−
1

2 (z − z̄)−
1

4 , (A.11)

〈ψaψb(y1)ψ
c(y2)SA(z)SB(z̄)〉

= +
1√
2

1

y1 − y2

[

δac(Σ
b
)AB(y2 − z)−

1

2 (y2 − z̄)−
1

2 (z − z̄)
1

4

]

+
1√
2

1

y1 − y2

[

δbc(Σ
a
)AB(y2 − z)−

1

2 (y2 − z̄)−
1

2 (z − z̄)
1

4

]

− 1

2
√

2

1

y1 − z

[

(Σ
ab

) B′

A (Σ
c
)B′B(y2 − z)−

1

2 (y2 − z̄)−
1

2 (z − z̄)
1

4

]

+
1

2
√

2

1

y1 − z̄

[

(Σ
ab

) B′

B (Σ
c
)AB′(y2 − z)−

1

2 (y2 − z̄)−
1

2 (z − z̄)
1

4

]

, (A.12)

where we have defined (Σ
ab

) B
A = 1

4

(

(Σ
a
)AC(Σb)CB − (Σ

b
)AC(Σa)CB

)

. The following for-

mulas are valid only when they are contracted with the (S,S)-type background C(αβ)(AB):

〈SγSC(y1)S
α̇SD(y2)ψ

µψa(y3)SαSA(z)SβSD(z̄)〉

=
1

2
εγβ(σµ) α̇

α (Σ
a
)ACδD

B(y1 − y2)
− 3

4 (y1 − z)−
3

4 (y1 − z̄)−
3

4 (y1 − y2)

×(y2 − z)−
3

4 (y2 − z̄)−
3

4 (y3 − z)−1(y3 − z̄)−1(z − z̄)−
3

4 (z − z̄)2, (A.13)

〈ψµψa(y1)ψ
νψb(y2)ψ

c(y3)SαSA(z)SβSB(z̄)〉

= − 1

4
√

2
(σµ)αα̇(σ̄ν)α̇β(Σ

a
ΣbΣ

c
)AB

×(y1 − z)−1(y1 − z̄)−1(y2 − z)−1(y2 − z̄)−1(y3 − z)−
1

2 (y3 − z̄)−
1

2 (z − z̄)
5

4 .(A.14)

〈ψaψb(y1)SC(y2)SD(y3)SA(z)SB(z̄)〉
= (Σ

ab
) A′

A εCDA′B
z − z̄

(y1 − z)(y1 − z̄)
[(y2 − y3)(y2 − z)(y2 − z̄)(y3 − z)(y3 − z̄)(z − z̄)]−

1

4 .

(A.15)

B. N = 4 super Yang-Mills theory on N = 1/2 superspace

In this appendix we calculate the Lagrangian of N = 4 super Yang-Mills theory defined on

N = 1/2 superspace. In terms of N = 1 superfields, this theory is constructed by a vector
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superfield V (x, θ, θ̄) and three chiral superfields Φi(y, θ) (i = 1, 2, 3) which belong to the

adjoint representation of the gauge group U(N). The deformed Lagrangian [14] is defined

by

LN=4
c =

1

k

∫

d2θd2θ̄ Tr

3
∑

i=1

(

Φi ∗ eV ∗ Φi ∗ e−V
)

+
1

16kg2
YM

∫

d2θ Tr (W α ∗ Wα) +
1

16kg2
YM

∫

dθ̄ Tr
(

W α̇ ∗ W
α̇
)

−
√

2

3

gYM

k

∫

d2θ Trεijk (Φi ∗ Φj ∗ Φk) +

√
2

3

gYM

k

∫

d2θ̄ Trεijk
(

Φi ∗ Φj ∗ Φk

)

.

(B.1)

Here the star product is defined by f(θ) ∗ g(θ) = f(θ) exp
[

−1
2Cαβ←−Qα

−→
Qβ

]

g(θ). Qα is the

supercharge defined on the superspace. It is convenient to redefine the component fields

of a superfield such that they transform canonically under the gauge transformation. The

expansion of the chiral superfield is the same as the undeformed one:

Φi(y, θ) = φi(y) + i
√

2θψi(y) + θθFi(y). (B.2)

The anti-chiral superfield is expanded as [25]

Φi(ȳ, θ̄) = φ̄i(ȳ)+i
√

2θ̄ψ̄i(ȳ)+θ̄θ̄

(

F̄i(ȳ)+iCµν∂µ{φ̄i, Aν}(ȳ)− gYM

2
Cµν [Aµ, {Aν , φ̄i}](ȳ)

)

(B.3)

where we have defined Cµν = Cαβεβγ(σµν) γ
α . The vector superfield in the Wess-Zumino

gauge is [4]

V (y, θ, θ̄) = −θσµθ̄Aµ(y) + iθθθ̄λ̄(y) − iθ̄θ̄θα

(

λα(y) +
1

4
εαβCβγσµ

γγ̇{λ̄γ̇ , Aµ}(y)

)

+
1

2
θθθ̄θ̄ (D(y) − i∂µAµ(y)) . (B.4)

Rescaling appropriately component fields and Cαβ by gauge coupling constant gYM, we

find that Lagrangian (B.1) becomes

LN=4
c =

1

kg2
YM

Tr

[

−1

4
FµνFµν − 1

4
F̃µνFµν − Dµφ̄iDµφi + F̄iFi +

1

2
D2 (B.5)

−iψ̄iσ̄
µDµψi − iλ̄σ̄µDµλ − i

√
2[φ̄i, ψi]λ − i

√
2[φi, ψ̄i]λ̄ + D[φi, φ̄i]

− i

2
CµνFµν λ̄λ̄ +

1

8
|C|2(λ̄λ̄)2 +

i

2
CµνFµν{φ̄i, Fi}

−
√

2

2
Cαβ{Dµφ̄i, (σ

µλ̄)α}ψiβ − 1

16
|C|2[φ̄i, λ][λ̄, Fi]

−
√

2εijk

(

Fiφjφk − φiψjψk − 1

12
|C|2FiFjFk − 1

2
CαβFiψjαψkβ

)

+
√

2εijk

(

F̄iφ̄j φ̄k − φ̄iψ̄jψ̄k +
2i

3
CµνFµν φ̄iφ̄jφ̄k +

1

3
CµνDµφ̄iDν φ̄jφ̄k

)]

.
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Integrating out the auxiliary fields we get

LN=4
c =

1

kg2
YM

Tr

[

−1

4
FµνFµν − 1

4
F̃µνFµν − iλ̄σ̄µDµλ − iψ̄iσ̄

µDµψi − Dµφ̄iDµφi

−i
√

2[φ̄i, ψi]λ − i
√

2[φi, ψ̄i]λ̄ − 1

2
[φi, φ̄i]

2 + [φ̄i, φ̄j ][φi, φj ]

− i

2
CµνFµν λ̄λ̄ +

1

8
|C|2(λ̄λ̄)2 −

√
2

2
Cαβ{Dµφ̄i, (σ

µλ̄)α}ψiβ

−
√

2εijk

(

−φiψjψk + φ̄iψ̄jψ̄k +
i

3
CµνFµν φ̄iφ̄j φ̄k − 1

3
CµνDµφ̄iDν φ̄j φ̄k

)

−Cαβ[φ̄i, φ̄j ]ψiαψjβ +

√
2

16
|C|2εijk[φ̄i, λ][λ̄, φ̄j φ̄k]

+
1

12
|C|2εipqεjrs[φ̄i, φ̄j ][φ̄p, φ̄q][φ̄r, φ̄s]

]

. (B.6)

We note that the term −Cαβ[φ̄i, φ̄j ]ψiαψjβ in the 5th line is absent in [14]. The relation

between scalar fields ϕa and φi is given by

ϕ2i−1 =
1√
2

(

φi + φ̄i

)

, ϕ2i =
i√
2

(

φi − φ̄i

)

, (i = 1, 2, 3). (B.7)
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